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A method of constructing a three-dimensional weight function using a variational formula for an elastic body with a crack and 
the theory of harmonic functions is described. Unlike earlier results [1, 2], with this method it is possible to take into account 
the variable curvature of the crack contour. The example of a plane embedded elliptical crack is given. © 1998 Elsevier Science 
Ltd. All rights reserved. 

A survey of weight functions is made in [3]. Approximate constructions of weight functions for the general case 
are given in [4, 5] and applied to elliptical cracks in [6--8]. 

I. We consider a plane crack in a linearly elastic body which occupies a simply connected volume V, bounded 
by a surface O. In a rectangular system of coordinates Xl, x2, x3, the crack lies in the plane x3 -- 0. We shall 
associate the positive orientation S + of the surface of the crack S with x3 = 0 +, and the negative orientation S- 
with x3 = 0-. 

The stress intensity factor (SIF) of normal detachment at any point M of the boundary of the crack F (the contour 
of  F is a two-dimensional curve) can be given by the formula 

Ki(M)=S~ KI(M;Q)p(Q)dS, M~r ,  Q~S + (1.1) 
s + 

Thus, if the weight function (WF) KI(M; Q) is known, the SIF KI(M) due to arbitrary pressurep(Q) on the surface 
of the cut S + and S- caJa be found from formula (1.1). 

We will consider the problem of constructing the WF in the general case when the crack contour F is a 
two-dimensional continuously differentiable curve. The method is based on the use of the variational 
formula [9, 10] 

nu3 (Q) = 7t(2 ul_ v) j Ki (M; Q)K I (M)Sn(M)ds (1.2) 8 
~t r 

which expresses the variation of the displacement 8nu3 of the crack surface S + due to variation of the crack contour. 
Here u3 is the projection of the displacement vector onto the x3 axis, v is Poisson's ratio, ix is the shear modulus 
and 8n is the variation of the crack contour in the direction of the external normal to the curve F. 

We introduce the notation 

K 1 (M;Q) = K~(M)K~(M;Q) (1.3) 

where K(M) is the curvature of the contour F at the point M. From an analysis of known WF, we see that the 
curvature K appears in the expression for the WF as stipulated in (1.3). 

Substituting (1.3) into (1.2), we obtain 

8nu3(Q) = ~ f* (M)K~ (M;Q)ds, f* (M) = ~ K~(M)KI(M)~(M) 
F 

(1.4) 

(the function f*(b 0 is given on the curve F). 
We then use a formula which expresses an harmonic function inside the contour F in terms of values on the 

boundary 

OG( M; Q) 
U(Q)= ~ f (M)N(M;Q)ds,  N(M;Q)= On (1.5) 

r 
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Here G(M; Q) is Green's function, and the derivative 0/0n is taken along the direction of the outward normal to 
F. Formula (1.5) gives the solution of the problem 

AU(Q)=O, Q¢s+; b~r=f(M),  M G F  

where S + is the simply connected region bounded by F. 
Puttingf*(M) instead off(M) in (1.5), we obtain 

U* (Q) = J f*(g)N(g;Q)ds  (1.6) 
F 

Here U*(Q) is an harmonic function in the region S ÷ andf*(M) are the limiting values of this function on F. 
We now return to formula (1.4). It can be represented in the form 

U*(Q) = ~ f*(M)N a (M;Q)ds, N l (M;Q) = K~(M;Q)U*(Q) (1.7) 
F 5nu3 (Q) 

S A • . . p l y i n g  the Laplace operator to both sides of (1.7), we see that N1(M; Q) is an harmonic function in the region 

The left-hand sides of expressions (1.6) and (1.7) both contain the harmonic function U* and have the same 
integrand. Hence, the harmonic functions N and N1 must also be equal [11], that is, 

N (M; Q) = N, (ill; Q) (1.8) 

Substituting expression (1.7) into (1.8) and taking account of relation (1.3), we obtain 

K I (M;Q) ~ K ~ (M)N(M;Q)SnU3 (Q) / U* (Q) (1.9) 

This is the most general representation for the WF KI(M; Q). 
The functions K(M) and N(M; Q) which appear in (1.9) depend on the crack shape. To find the function 6nu3/U*, 

which also appears in (1.9) and depends both on the shape of the crack and on the shape of the elastic body, we 
need to solve some simpler problem for the given body V and a given crack (the trial solution). 

A fairly general method of constructing a WF, which is also based on the use of the variational formula (1.2), 
for a body with a crack was proposed in [1, 2]. However, that method can only be used for cracks with a contour 
of constant curvature K. Approximate methods of constructing the WF for a crack with an arbitrary contour F are 
described in [4, 5]. 

If we substitute the expression for the WF (1.9) into the variational formula (1.2), we obtain an identity. 

2. We will write formula (1.9) in the form 

K l (M;Q) = K~(M)N(M;Q)F(Q), F(Q) = 8nu3(Q)IU*(Q ) (2.1) 

i.e. the function F(Q) should not depend on the form of the "trial solution", since the functions KI(M; Q), K(M) 
and N(M; Q) do not depend on that solution either. The easiest way of verifying this fact is to consider the example 
of an embedded circular crack. 

In polar coordinates r, 0, for a circular crack of radius a we have 

1 a 2 - r 2 
Kl(tP;r,O)=-------~, F(r,O) ^., A(r, cO-O)=a2 +r2-2arcos(~p-O) (2.2) 

21caY2 A(r, cp -tO 

We will consider an infinite elastic isotropic body and show, by means of examples, that the function F(r, O) in 
(2.2) is independent of the "trial solution". 

Example 1. A pressurep(r), independent of the angle 0, is applied to the surfaces of the circular crack. Then [12] 

1 - v  i ,(t)dt r <. a; 1(/)= 2 ~  rlp(r 1)d~ 
~t r ( t 2 - r 2 ) ) ~ '  ~ o  (t2-r12) ~ 

u~(r,O) = 

Using this expression, we find 

a l/2~jag| 1 1 - v  
K 1 =-:~'w l(a), 8nUz(r,O)= 

~t (a2_r2)~ aZ~ 
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We then obtain expressions forf*(tp) and U*(r, 0) from (1.4) and (1.6), and find 

~ _  2 
F(r,O) = U'(r,e) - n ( a  2 _ r2))~ (2.3) 

Substituting this expression into (2.2), we obtain 

l (a2 - r2 )~  (2.4) 
Ki0P;r,0)= ~2a~ A(r,9-O) 

which agrees with known results. 

Example 2. We now consider the most general case, in which a pressurep(r, 0) is applied to the surfaces of the 
circular crack. In this case the SIF will depend on the angle q~, that is, K1 = Kl(~0). In the previous example we first 
found the function F(r, O) and then the WF KI(~p; r, 0). However, we can do the opposite and take the expression 
for the WF (2.4) and use it to find a formula for F(r, 0), which should be the same as (2.3)• 

Substituting (2.4) into (1.2), we have an expression for 8,uz(r, 0). Then, using expressions (1.4) and (1.6), we 
find U*(r, 0). Again we arrive at formula (2.3), and thus the function F(r, O) is independent of the form of the 
"trial solution". 

3. We will now use formula (2.1) to find the WF for an embedded elliptical crack in an elastic body. The crack 
lies in the x3 = 0 plane of the Cartesian system of coordinates xl, x2, x3; a and b are the semi-axes of the bounding 
ellipse, a I> b. 

In the x3 = 0 plane we introduce the elliptical coordinates u, u 

x I =cchucosu, x 2 =cshusinu (u~O, O~u  ~ 2 z )  

where c = ae and e is the eccentricity of the bounding ellipse. We have 

K(t) = abIl-~(t), If(t) = a 2 sin 2 t+b 2 cos 2 t 

It can be shown that in this case 

=I ~,ch nuo shnuo 
sinno sinnt)t thu o =k'--ba 

(3.1) 

(3.2) 

where uo is the bounding ellipse. 
Formula (2.1) for an elliptical crack takes the form 

K I (t;u,u) = K ~ (t)N(t;u,u)F(u,u ) (3.3) 

The functions K(t) and N(t; u, u) are defined by expressions (3.1) and (3.2), respectively, and depend only on the 
crack shape. The function F(u, u) which appears in (3.3) depends both on the crack shape and on the configuration 
of the elastic body. We need a "trial solution" in order to find F(u, u). 

We will consider the problem of finding a function F(u, o) for an infinite elastic body with an embedded elliptical 
crack• We already have a "trial solution" of this problem in the case where a constant pressurep is applied to the 
crack surfaces. 

In the x3 = 0 plane, 'we will introduce the generalized polar coordinates p and q~ 

x I = a p c o s g ,  x 2=bps in  9 ( 0 ~ p ~ l ,  0 ~ 9 < ~ 2 x )  

Ifp(p,  q~) = p = const, then [12] 

(k') ~ u3(p,9)=(lk.(l_p2)/t:z,-v)bp p ~ l ;  Kl(c p) . . . .  P l'I/~0p) (3.4) • ~ ) ~k) 

where k = (1 - k'2) lrz, k' = b/a, E(k) is a complete elliptic integral of the second kind. 
From the first formula of (3.4) we have 

8nU3(p,q~) = (1-v)pSb ~b , ~(k)O- p2)~' ~ = k (3.5) 

Then, using (1.4), (3.1) and the second formula of (3•4), we find 
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f*(t)  = g(1 - v)pabSb rl_ I (t) 
2la~k) 

(taking fin(t) = b~a/H1/Z(t)). 
On the contour of the ellipse, that is, when u = u0 

(3.6) 

s in s cp + (k')  2 cos 2 ~p = sin 2 t + (k')  2 cos 2 t; dip = d t  

Substituting (3.6) into (1.6), we obtain 

g(1- v)pabSb, , , 2~ 
U*(u,v)= ~ tJotU, v), Uo(U,V)= j" N(t;u,v)rI-~(t~ 

o 
(3.7) 

Then using (3.5) and (3.7) we have 

~nu3 = 2 
F(u,u )= U* rtab(l_p2)Y2Uo(u,o ) 

Substituting (3.1) and (3.8) into (3.3), we have finally 

(3.8) 

2N(t;u,v ) 
Kl (t;u'v ) = n(ab)~ i i~( t)( l  _p2 )~  Uo(u,v ) 

2 
l-p 2-- 1 - ( k )  (sh2 usin2v +k'2ch2ucos2v) 

(3.9) 

Formula (3.9) defines the WF for an unbounded elastic body with an embedded elliptical crack. If the crack is 
circular (a = b), (3.9) reduces to (2.4). 

The WF Kl(t; u, o) is the SIF of the effect of unit lumped normal forces applied to the crack surfaces at a point 
with coordinates u, u. 

We now consider the special case of unit lumped forces applied to the crack surfaces at the centre of the ellipse. 
In this case u = 0, t~ = n/2, and formula (3.9) takes the form 

7t(ab) ~ 1"I ~ (t)U i 
(3.10) 

4t;O.- '~=-- (1  +2,Y_., e°snnl2cosnt Ut = .f/~t;o,-~]n-~(t)at 
\ 23 27t~, .=1 chrm 0 ; O k 2)  

Suppose further that the elliptical crack is very nearly circular. In that case the semi-axes of the ellipse are equal, 
respectively, to (1 + e)b and 6 "~ 1. Then formula (3.10) takes the much simpler form 

' 

g2b~ L 4 J 

in agreement with the well-known result [13] obtained by another method. 
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